Iterative methods, Jacobi's method

We can demonstrate Jacobi's method by this \( 4\times 4 \) matrix problem. We assume a guess for the vector elements \( x_i^{(0)} \), a guess which represents our first iteration. The new values are obtained by substitution $$ \begin{align} x_1^{(1)} =&(b_1-a_{12}x_2^{(0)} -a_{13}x_3^{(0)} - a_{14}x_4^{(0)})/a_{11} \nonumber \\ x_2^{(1)} =&(b_2-a_{21}x_1^{(0)} - a_{23}x_3^{(0)} - a_{24}x_4^{(0)})/a_{22} \nonumber \\ x_3^{(1)} =&(b_3- a_{31}x_1^{(0)} -a_{32}x_2^{(0)} -a_{34}x_4^{(0)})/a_{33} \nonumber \\ x_4^{(1)}=&(b_4-a_{41}x_1^{(0)} -a_{42}x_2^{(0)} - a_{43}x_3^{(0)})/a_{44}, \nonumber \end{align} $$ which after \( k+1 \) iterations reads $$ \begin{align} x_1^{(k+1)} =&(b_1-a_{12}x_2^{(k)} -a_{13}x_3^{(k)} - a_{14}x_4^{(k)})/a_{11} \nonumber \\ x_2^{(k+1)} =&(b_2-a_{21}x_1^{(k)} - a_{23}x_3^{(k)} - a_{24}x_4^{(k)})/a_{22} \nonumber \\ x_3^{(k+1)} =&(b_3- a_{31}x_1^{(k)} -a_{32}x_2^{(k)} -a_{34}x_4^{(k)})/a_{33} \nonumber \\ x_4^{(k+1)}=&(b_4-a_{41}x_1^{(k)} -a_{42}x_2^{(k)} - a_{43}x_3^{(k)})/a_{44}, \nonumber \end{align} $$