Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Explicit Scheme, algorithm

If we use standard approximations for the derivatives we obtain \begin{equation*} u_t\approx \frac{u(x,t+\Delta t)-u(x,t)}{\Delta t}=\frac{u(x_i,t_j+\Delta t)-u(x_i,t_j)}{\Delta t} \end{equation*} with a local approximation error O(\Delta t) and \begin{equation*} u_{xx}\approx \frac{u(x+\Delta x,t)-2u(x,t)+u(x-\Delta x,t)}{\Delta x^2}, \end{equation*} or \begin{equation*} u_{xx}\approx \frac{u(x_i+\Delta x,t_j)-2u(x_i,t_j)+u(x_i-\Delta x,t_j)}{\Delta x^2}, \end{equation*} with a local approximation error O(\Delta x^2) . Our approximation is to higher order in coordinate space. This can be justified since in most cases it is the spatial dependence which causes numerical problems.