Explicit Scheme, algorithm
If we use standard approximations for the derivatives we obtain
\begin{equation*}
u_t\approx \frac{u(x,t+\Delta t)-u(x,t)}{\Delta t}=\frac{u(x_i,t_j+\Delta t)-u(x_i,t_j)}{\Delta t}
\end{equation*}
with a local approximation error
O(\Delta t)
and
\begin{equation*}
u_{xx}\approx \frac{u(x+\Delta x,t)-2u(x,t)+u(x-\Delta x,t)}{\Delta x^2},
\end{equation*}
or
\begin{equation*}
u_{xx}\approx \frac{u(x_i+\Delta x,t_j)-2u(x_i,t_j)+u(x_i-\Delta x,t_j)}{\Delta x^2},
\end{equation*}
with a local approximation error
O(\Delta x^2) . Our approximation is to higher order
in coordinate space. This can be justified since in most cases it is the spatial
dependence which causes numerical problems.