Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Scheme for solving Laplace's (Poisson's) equation

If we isolate on the left-hand side the unknown quantities u_{11} , u_{12} , u_{21} and u_{22} , that is the inner points not constrained by the boundary conditions, we can rewrite the above equations as a matrix \mathbf{A} times an unknown vector \mathbf{x} , that is \begin{equation*} Ax = b, \end{equation*} or in more detail \begin{equation*} \begin{bmatrix} 4&-1 &-1 &0 \\ -1& 4 &0 &-1 \\ -1& 0 &4 &-1 \\ 0& -1 &-1 &4 \\ \end{bmatrix}\begin{bmatrix} u_{11}\\ u_{12}\\ u_{21} \\ u_{22} \\ \end{bmatrix}=\begin{bmatrix} u_{01}+u_{10}-\tilde{\rho}_{11}\\ u_{13}+u_{02}-\tilde{\rho}_{12}\\ u_{31}+u_{20}-\tilde{\rho}_{21} \\ u_{32}+u_{23}-\tilde{\rho}_{22}\\ \end{bmatrix}. \end{equation*}