Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Explicit Scheme, simplifications

These equations can be further simplified as \begin{equation*} u_t\approx \frac{u_{i,j+1}-u_{i,j}}{\Delta t}, \end{equation*} and \begin{equation*} u_{xx}\approx \frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{\Delta x^2}. \end{equation*} The one-dimensional diffusion equation can then be rewritten in its discretized version as \begin{equation*} \frac{u_{i,j+1}-u_{i,j}}{\Delta t}=\frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{\Delta x^2}. \end{equation*} Defining \alpha = \Delta t/\Delta x^2 results in the explicit scheme \begin{equation} \tag{7} u_{i,j+1}= \alpha u_{i-1,j}+(1-2\alpha)u_{i,j}+\alpha u_{i+1,j}. \end{equation}