Error in CN scheme
For the Crank-Nicolson scheme we also need to Taylor expand
u(x+Δx,t+Δt) and
u(x−Δx,t+Δt) around
t′=t+Δt/2.
u(x+Δx,t+Δt)=u(x,t′)+∂u(x,t′)∂xΔx+∂u(x,t′)∂tΔt2+∂2u(x,t′)2∂x2Δx2+∂2u(x,t′)2∂t2Δt24+∂2u(x,t′)∂x∂tΔt2Δx+O(Δt3)u(x−Δx,t+Δt)=u(x,t′)−∂u(x,t′)∂xΔx+∂u(x,t′)∂tΔt2+∂2u(x,t′)2∂x2Δx2+∂2u(x,t′)2∂t2Δt24−∂2u(x,t′)∂x∂tΔt2Δx+O(Δt3)u(x+Δx,t)=u(x,t′)+∂u(x,t′)∂xΔx−∂u(x,t′)∂tΔt2+∂2u(x,t′)2∂x2Δx2+∂2u(x,t′)2∂t2Δt24−∂2u(x,t′)∂x∂tΔt2Δx+O(Δt3)u(x−Δx,t)=u(x,t′)−∂u(x,t′)∂xΔx−∂u(x,t′)∂tΔt2+∂2u(x,t′)2∂x2Δx2+∂2u(x,t′)2∂t2Δt24+∂2u(x,t′)∂x∂tΔt2Δx+O(Δt3)u(x,t+Δt)=u(x,t′)+∂u(x,t′)∂tΔt2+∂2u(x,t′)2∂t2Δt2+O(Δt3)u(x,t)=u(x,t′)−∂u(x,t′)∂tΔt2+∂2u(x,t′)2∂t2Δt2+O(Δt3)
We now insert these expansions in the approximations for the derivatives to find
[∂u(x,t′)∂t]approx=∂u(x,t′)∂t+O(Δt2),[∂2u(x,t′)∂x2]approx=∂2u(x,t′)∂x2+O(Δx2).