Processing math: 100%

 

 

 

Error in CN scheme

For the Crank-Nicolson scheme we also need to Taylor expand u(x+Δx,t+Δt) and u(xΔx,t+Δt) around t=t+Δt/2. u(x+Δx,t+Δt)=u(x,t)+u(x,t)xΔx+u(x,t)tΔt2+2u(x,t)2x2Δx2+2u(x,t)2t2Δt24+2u(x,t)xtΔt2Δx+O(Δt3)u(xΔx,t+Δt)=u(x,t)u(x,t)xΔx+u(x,t)tΔt2+2u(x,t)2x2Δx2+2u(x,t)2t2Δt242u(x,t)xtΔt2Δx+O(Δt3)u(x+Δx,t)=u(x,t)+u(x,t)xΔxu(x,t)tΔt2+2u(x,t)2x2Δx2+2u(x,t)2t2Δt242u(x,t)xtΔt2Δx+O(Δt3)u(xΔx,t)=u(x,t)u(x,t)xΔxu(x,t)tΔt2+2u(x,t)2x2Δx2+2u(x,t)2t2Δt24+2u(x,t)xtΔt2Δx+O(Δt3)u(x,t+Δt)=u(x,t)+u(x,t)tΔt2+2u(x,t)2t2Δt2+O(Δt3)u(x,t)=u(x,t)u(x,t)tΔt2+2u(x,t)2t2Δt2+O(Δt3) We now insert these expansions in the approximations for the derivatives to find [u(x,t)t]approx=u(x,t)t+O(Δt2),[2u(x,t)x2]approx=2u(x,t)x2+O(Δx2).