Error in CN scheme
For the Crank-Nicolson scheme we also need to Taylor expand \( u(x+\Delta x, t+\Delta t) \) and \( u(x-\Delta x, t+\Delta t) \) around \( t'=t+\Delta t/2 \).
$$
\begin{align}
u(x+\Delta x, t+\Delta t)&=u(x,t')+\frac{\partial u(x,t')}{\partial x}\Delta x+\frac{\partial u(x,t')}{\partial t} \frac{\Delta t}{2} +\frac{\partial^2 u(x,t')}{2\partial x^2}\Delta x^2+\frac{\partial^2 u(x,t')}{2\partial t^2}\frac{\Delta t^2}{4} +\notag
\tag{13}\\ \nonumber
&\frac{\partial^2 u(x,t')}{\partial x\partial t}\frac{\Delta t}{2} \Delta x+ \mathcal{O}(\Delta t^3)\\ \nonumber
u(x-\Delta x, t+\Delta t)&=u(x,t')-\frac{\partial u(x,t')}{\partial x}\Delta x+\frac{\partial u(x,t')}{\partial t} \frac{\Delta t}{2} +\frac{\partial^2 u(x,t')}{2\partial x^2}\Delta x^2+\frac{\partial^2 u(x,t')}{2\partial t^2}\frac{\Delta t^2}{4} - \notag\\ \nonumber
&\frac{\partial^2 u(x,t')}{\partial x\partial t}\frac{\Delta t}{2} \Delta x+ \mathcal{O}(\Delta t^3)\\
u(x+\Delta x,t)&=u(x,t')+\frac{\partial u(x,t')}{\partial x}\Delta x-\frac{\partial u(x,t')}{\partial t} \frac{\Delta t}{2} +\frac{\partial^2 u(x,t')}{2\partial x^2}\Delta x^2+\frac{\partial^2 u(x,t')}{2\partial t^2}\frac{\Delta t^2}{4} -\notag
\tag{14}\\ \nonumber
&\frac{\partial^2 u(x,t')}{\partial x\partial t}\frac{\Delta t}{2} \Delta x+ \mathcal{O}(\Delta t^3)\\ \nonumber
u(x-\Delta x,t)&=u(x,t')-\frac{\partial u(x,t')}{\partial x}\Delta x-\frac{\partial u(x,t')}{\partial t} \frac{\Delta t}{2} +\frac{\partial^2 u(x,t')}{2\partial x^2}\Delta x^2+\frac{\partial^2 u(x,t')}{2\partial t^2}\frac{\Delta t^2}{4} +\notag \\ \nonumber
&\frac{\partial^2 u(x,t')}{\partial x\partial t}\frac{\Delta t}{2} \Delta x+ \mathcal{O}(\Delta t^3)\\ \nonumber
u(x,t+\Delta t)&=u(x,t')+\frac{\partial u(x,t')}{\partial t}\frac{\Delta_t}{2} +\frac{\partial ^2 u(x,t')}{2\partial t^2}\Delta t^2 + \mathcal{O}(\Delta t^3)\\ \nonumber
u(x,t)&=u(x,t')-\frac{\partial u(x,t')}{\partial t}\frac{\Delta t}{2}+\frac{\partial ^2 u(x,t')}{2\partial t^2}\Delta t^2 + \mathcal{O}(\Delta t^3)
\tag{15}
\end{align}
$$
We now insert these expansions in the approximations for the derivatives to find
$$
\begin{align}
&\left[\frac{\partial u(x,t')}{\partial t}\right]_{\text{approx}} =\frac{\partial u(x,t')}{\partial t}+\mathcal{O}(\Delta t^2) ,
\tag{16}\\ \nonumber
&\left[\frac{\partial^2 u(x,t')}{\partial x^2}\right]_{\text{approx}}=\frac{\partial^2 u(x,t')}{\partial x^2}+\mathcal{O}(\Delta x^2).
\end{align}
$$