Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Explicit Scheme, stability condition

If we assume that x can be expanded in a basis of x=(\sin{(\theta)}, \sin{(2\theta)},\dots, \sin{(n\theta)}) with \theta = l\pi/n+1 , where we have the endpoints given by x_0 = 0 and x_{n+1}=0 , we can rewrite the last equation as \begin{equation*} 2\sin{(i\theta)}-\sin{((i+1)\theta)}-\sin{((i-1)\theta)}=\mu_i\sin{(i\theta)}, \end{equation*} or \begin{equation*} 2\left(1-\cos{(\theta)}\right)\sin{(i\theta)}=\mu_i\sin{(i\theta)}, \end{equation*} which is nothing but \begin{equation*} 2\left(1-\cos{(\theta)}\right)x_i=\mu_ix_i, \end{equation*} with eigenvalues \mu_i = 2-2\cos{(\theta)} .

Our requirement in Eq. (8) results in \begin{equation*} -1 < 1-\alpha2\left(1-\cos{(\theta)}\right) < 1, \end{equation*} which is satisfied only if \alpha < \left(1-\cos{(\theta)}\right)^{-1} resulting in \alpha \le 1/2 or \Delta t/\Delta x^2 \le 1/2 .