Scheme for solving Laplace's (Poisson's) equation, final rewrite

We can rewrite the equations in a more compact form in terms of the matrices \( \mathbf{D} \), \( \mathbf{L} \) and \( \mathbf{U} \) as, after \( r+1 \) iterations, $$ \begin{equation} \tag{20} \mathbf{x}^{(r+1)}= \mathbf{D}^{-1}\left(\mathbf{b} - (\mathbf{L}+\mathbf{U})\mathbf{x}^{(r)}\right), \end{equation} $$ where the unknown functions are now defined in terms of $$ \begin{equation*} \mathbf{x}= \begin{bmatrix} u_{11}\\ u_{12}\\ u_{21}\\ u_{22}\\ \end{bmatrix}. \end{equation*} $$ If we wish to implement Gauss-Seidel's algorithm, the set of equations to solve are then given by $$ \begin{equation} \tag{21} \mathbf{x}^{(r+1)}= -(\mathbf{D}+\mathbf{L})^{-1}\left(\mathbf{b} -\mathbf{U}\mathbf{x}^{(r)}\right), \end{equation} $$ or alternatively as $$ \begin{equation*} \mathbf{x}^{(r+1)}= \mathbf{D}^{-1}\left(\mathbf{b} -\mathbf{L}\mathbf{x}^{(r+1)}-\mathbf{U}\mathbf{x}^{(r)}\right). \end{equation*} $$