Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Scheme for solving Laplace's (Poisson's) equation using Jacobi's iterative method

In setting up for example Jacobi's method, it is useful to rewrite the matrix \mathbf{A} as \begin{equation*} \mathbf{A}=\mathbf{D}+\mathbf{U}+\mathbf{L}, \end{equation*} with \mathbf{D} being a diagonal matrix with 4 as the only value, \mathbf{U} is an upper triangular matrix and \mathbf{L} a lower triangular matrix. In our case we have \begin{equation*} \mathbf{D}=\begin{bmatrix}4&0 &0 &0 \\ 0& 4 &0 &0 \\ 0& 0 &4 &0 \\ 0& 0 &0 &4 \\ \end{bmatrix}, \end{equation*} and \begin{equation*} \mathbf{L}=\begin{bmatrix} 0&0 &0 &0 \\ -1& 0 &0 &0 \\ -1& 0 &0 &0 \\ 0& -1 &-1 &0 \\ \end{bmatrix} \hspace{1cm} \mathbf{U}= \begin{bmatrix} 0&-1 &-1 &0 \\ 0& 0 &0 &-1 \\ 0& 0 &0 &-1 \\ 0& 0 &0 &0 \\ \end{bmatrix}. \end{equation*}