Linear Regression and the SVD

We used the SVD to analyse the matrix to invert in ordinary lineat regression

$$ \boldsymbol{X}^T\boldsymbol{X}=\boldsymbol{V}\boldsymbol{\Sigma}^T\boldsymbol{U}^T\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T=\boldsymbol{V}\boldsymbol{\Sigma}^T\boldsymbol{\Sigma}\boldsymbol{V}^T. $$

Since the matrices here have dimension \( p\times p \), with \( p \) corresponding to the singular values, we defined last week the matrix

$$ \boldsymbol{\Sigma}^T\boldsymbol{\Sigma} = \begin{bmatrix} \tilde{\boldsymbol{\Sigma}} & \boldsymbol{0}\\ \end{bmatrix}\begin{bmatrix} \tilde{\boldsymbol{\Sigma}} \\ \boldsymbol{0}\end{bmatrix}, $$

where the tilde-matrix \( \tilde{\boldsymbol{\Sigma}} \) is a matrix of dimension \( p\times p \) containing only the singular values \( \sigma_i \), that is

$$ \tilde{\boldsymbol{\Sigma}}=\begin{bmatrix} \sigma_0 & 0 & 0 & \dots & 0 & 0 \\ 0 & \sigma_1 & 0 & \dots & 0 & 0 \\ 0 & 0 & \sigma_2 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & \sigma_{p-2} & 0 \\ 0 & 0 & 0 & \dots & 0 & \sigma_{p-1} \\ \end{bmatrix}, $$

meaning we can write

$$ \boldsymbol{X}^T\boldsymbol{X}=\boldsymbol{V}\tilde{\boldsymbol{\Sigma}}^2\boldsymbol{V}^T. $$

Multiplying from the right with \( \boldsymbol{V} \) (using the orthogonality of \( \boldsymbol{V} \)) we get

$$ \left(\boldsymbol{X}^T\boldsymbol{X}\right)\boldsymbol{V}=\boldsymbol{V}\tilde{\boldsymbol{\Sigma}}^2. $$