SVD analysis

Using our insights about the SVD of the design matrix \( \boldsymbol{X} \) We have already analyzed the OLS solutions in terms of the eigenvectors (the columns) of the right singular value matrix \( \boldsymbol{U} \) as

$$ \tilde{\boldsymbol{y}}_{\mathrm{OLS}}=\boldsymbol{X}\boldsymbol{\beta} =\boldsymbol{U}\boldsymbol{U}^T\boldsymbol{y}. $$

For Ridge regression this becomes

$$ \tilde{\boldsymbol{y}}_{\mathrm{Ridge}}=\boldsymbol{X}\boldsymbol{\beta}_{\mathrm{Ridge}} = \boldsymbol{U\Sigma V^T}\left(\boldsymbol{V}\boldsymbol{\Sigma}^2\boldsymbol{V}^T+\lambda\boldsymbol{I} \right)^{-1}(\boldsymbol{U\Sigma V^T})^T\boldsymbol{y}=\sum_{j=0}^{p-1}\boldsymbol{u}_j\boldsymbol{u}_j^T\frac{\sigma_j^2}{\sigma_j^2+\lambda}\boldsymbol{y}, $$

with the vectors \( \boldsymbol{u}_j \) being the columns of \( \boldsymbol{U} \) from the SVD of the matrix \( \boldsymbol{X} \).