Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Expectation value and variance for \boldsymbol{\beta}

With the OLS expressions for the optimal parameters \boldsymbol{\hat{\beta}} we can evaluate the expectation value

\mathbb{E}(\boldsymbol{\hat{\beta}}) = \mathbb{E}[ (\mathbf{X}^{\top} \mathbf{X})^{-1}\mathbf{X}^{T} \mathbf{Y}]=(\mathbf{X}^{T} \mathbf{X})^{-1}\mathbf{X}^{T} \mathbb{E}[ \mathbf{Y}]=(\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T}\mathbf{X}\boldsymbol{\beta}=\boldsymbol{\beta}.

This means that the estimator of the regression parameters is unbiased.

We can also calculate the variance

The variance of the optimal value \boldsymbol{\hat{\beta}} is

\begin{eqnarray*} \mbox{Var}(\boldsymbol{\hat{\beta}}) & = & \mathbb{E} \{ [\boldsymbol{\beta} - \mathbb{E}(\boldsymbol{\beta})] [\boldsymbol{\beta} - \mathbb{E}(\boldsymbol{\beta})]^{T} \} \\ & = & \mathbb{E} \{ [(\mathbf{X}^{T} \mathbf{X})^{-1} \, \mathbf{X}^{T} \mathbf{Y} - \boldsymbol{\beta}] \, [(\mathbf{X}^{T} \mathbf{X})^{-1} \, \mathbf{X}^{T} \mathbf{Y} - \boldsymbol{\beta}]^{T} \} \\ % & = & \mathbb{E} \{ [(\mathbf{X}^{T} \mathbf{X})^{-1} \, \mathbf{X}^{T} \mathbf{Y}] \, [(\mathbf{X}^{T} \mathbf{X})^{-1} \, \mathbf{X}^{T} \mathbf{Y}]^{T} \} - \boldsymbol{\beta} \, \boldsymbol{\beta}^{T} % \\ % & = & \mathbb{E} \{ (\mathbf{X}^{T} \mathbf{X})^{-1} \, \mathbf{X}^{T} \mathbf{Y} \, \mathbf{Y}^{T} \, \mathbf{X} \, (\mathbf{X}^{T} \mathbf{X})^{-1} \} - \boldsymbol{\beta} \, \boldsymbol{\beta}^{T} % \\ & = & (\mathbf{X}^{T} \mathbf{X})^{-1} \, \mathbf{X}^{T} \, \mathbb{E} \{ \mathbf{Y} \, \mathbf{Y}^{T} \} \, \mathbf{X} \, (\mathbf{X}^{T} \mathbf{X})^{-1} - \boldsymbol{\beta} \, \boldsymbol{\beta}^{T} \\ & = & (\mathbf{X}^{T} \mathbf{X})^{-1} \, \mathbf{X}^{T} \, \{ \mathbf{X} \, \boldsymbol{\beta} \, \boldsymbol{\beta}^{T} \, \mathbf{X}^{T} + \sigma^2 \} \, \mathbf{X} \, (\mathbf{X}^{T} \mathbf{X})^{-1} - \boldsymbol{\beta} \, \boldsymbol{\beta}^{T} % \\ % & = & (\mathbf{X}^T \mathbf{X})^{-1} \, \mathbf{X}^T \, \mathbf{X} \, \boldsymbol{\beta} \, \boldsymbol{\beta}^T \, \mathbf{X}^T \, \mathbf{X} \, (\mathbf{X}^T % \mathbf{X})^{-1} % \\ % & & + \, \, \sigma^2 \, (\mathbf{X}^T \mathbf{X})^{-1} \, \mathbf{X}^T \, \mathbf{X} \, (\mathbf{X}^T \mathbf{X})^{-1} - \boldsymbol{\beta} \boldsymbol{\beta}^T \\ & = & \boldsymbol{\beta} \, \boldsymbol{\beta}^{T} + \sigma^2 \, (\mathbf{X}^{T} \mathbf{X})^{-1} - \boldsymbol{\beta} \, \boldsymbol{\beta}^{T} \, \, \, = \, \, \, \sigma^2 \, (\mathbf{X}^{T} \mathbf{X})^{-1}, \end{eqnarray*}

where we have used that \mathbb{E} (\mathbf{Y} \mathbf{Y}^{T}) = \mathbf{X} \, \boldsymbol{\beta} \, \boldsymbol{\beta}^{T} \, \mathbf{X}^{T} + \sigma^2 \, \mathbf{I}_{nn} . From \mbox{Var}(\boldsymbol{\beta}) = \sigma^2 \, (\mathbf{X}^{T} \mathbf{X})^{-1} , one obtains an estimate of the variance of the estimate of the j -th regression coefficient: \boldsymbol{\sigma}^2 (\boldsymbol{\beta}_j ) = \boldsymbol{\sigma}^2 [(\mathbf{X}^{T} \mathbf{X})^{-1}]_{jj} . This may be used to construct a confidence interval for the estimates.

In a similar way, we can obtain analytical expressions for say the expectation values of the parameters \boldsymbol{\beta} and their variance when we employ Ridge regression, allowing us again to define a confidence interval.

It is rather straightforward to show that

\mathbb{E} \big[ \boldsymbol{\beta}^{\mathrm{Ridge}} \big]=(\mathbf{X}^{T} \mathbf{X} + \lambda \mathbf{I}_{pp})^{-1} (\mathbf{X}^{\top} \mathbf{X})\boldsymbol{\beta}^{\mathrm{OLS}}.

We see clearly that \mathbb{E} \big[ \boldsymbol{\beta}^{\mathrm{Ridge}} \big] \not= \boldsymbol{\beta}^{\mathrm{OLS}} for any \lambda > 0 . We say then that the ridge estimator is biased.

We can also compute the variance as

\mbox{Var}[\boldsymbol{\beta}^{\mathrm{Ridge}}]=\sigma^2[ \mathbf{X}^{T} \mathbf{X} + \lambda \mathbf{I} ]^{-1} \mathbf{X}^{T} \mathbf{X} \{ [ \mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I} ]^{-1}\}^{T},

and it is easy to see that if the parameter \lambda goes to infinity then the variance of Ridge parameters \boldsymbol{\beta} goes to zero.

With this, we can compute the difference

\mbox{Var}[\boldsymbol{\beta}^{\mathrm{OLS}}]-\mbox{Var}(\boldsymbol{\beta}^{\mathrm{Ridge}})=\sigma^2 [ \mathbf{X}^{T} \mathbf{X} + \lambda \mathbf{I} ]^{-1}[ 2\lambda\mathbf{I} + \lambda^2 (\mathbf{X}^{T} \mathbf{X})^{-1} ] \{ [ \mathbf{X}^{T} \mathbf{X} + \lambda \mathbf{I} ]^{-1}\}^{T}.

The difference is non-negative definite since each component of the matrix product is non-negative definite. This means the variance we obtain with the standard OLS will always for \lambda > 0 be larger than the variance of \boldsymbol{\beta} obtained with the Ridge estimator. This has interesting consequences when we discuss the so-called bias-variance trade-off below.