Using our insights about the SVD of the design matrix \boldsymbol{X} We have already analyzed the OLS solutions in terms of the eigenvectors (the columns) of the right singular value matrix \boldsymbol{U} as
\tilde{\boldsymbol{y}}_{\mathrm{OLS}}=\boldsymbol{X}\boldsymbol{\beta} =\boldsymbol{U}\boldsymbol{U}^T\boldsymbol{y}.For Ridge regression this becomes
\tilde{\boldsymbol{y}}_{\mathrm{Ridge}}=\boldsymbol{X}\boldsymbol{\beta}_{\mathrm{Ridge}} = \boldsymbol{U\Sigma V^T}\left(\boldsymbol{V}\boldsymbol{\Sigma}^2\boldsymbol{V}^T+\lambda\boldsymbol{I} \right)^{-1}(\boldsymbol{U\Sigma V^T})^T\boldsymbol{y}=\sum_{j=0}^{p-1}\boldsymbol{u}_j\boldsymbol{u}_j^T\frac{\sigma_j^2}{\sigma_j^2+\lambda}\boldsymbol{y},with the vectors \boldsymbol{u}_j being the columns of \boldsymbol{U} from the SVD of the matrix \boldsymbol{X} .