Using the matrix-vector expression for Ridge regression and dropping the parameter 1/n in front of the standard means squared error equation, we have
C(\boldsymbol{X},\boldsymbol{\beta})=\left\{(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta})^T(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta})\right\}+\lambda\boldsymbol{\beta}^T\boldsymbol{\beta},and taking the derivatives with respect to \boldsymbol{\beta} we obtain then a slightly modified matrix inversion problem which for finite values of \lambda does not suffer from singularity problems. We obtain the optimal parameters
\hat{\boldsymbol{\beta}}_{\mathrm{Ridge}} = \left(\boldsymbol{X}^T\boldsymbol{X}+\lambda\boldsymbol{I}\right)^{-1}\boldsymbol{X}^T\boldsymbol{y},with \boldsymbol{I} being a p\times p identity matrix with the constraint that
\sum_{i=0}^{p-1} \beta_i^2 \leq t,with t a finite positive number.