Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

The OLS case

For ordinary least squares (OLS) we know that the optimal solution is

\hat{\boldsymbol{\beta}}^{\mathrm{OLS}}=\left( \boldsymbol{X}^T\boldsymbol{X}\right)^{-1}\boldsymbol{X}^T\boldsymbol{y}.

Inserting the above values we obtain that

\hat{\boldsymbol{\beta}}^{\mathrm{OLS}}=\begin{bmatrix}2 \\ 2\end{bmatrix},

The code which implements this simpler case is presented after the discussion of Ridge and Lasso.