And finally \( \boldsymbol{X}\boldsymbol{X}^T \)

For \( \boldsymbol{X}\boldsymbol{X}^T \) we found

$$ \boldsymbol{X}\boldsymbol{X}^T=\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T\boldsymbol{V}\boldsymbol{\Sigma}^T\boldsymbol{U}^T=\boldsymbol{U}\boldsymbol{\Sigma}^T\boldsymbol{\Sigma}\boldsymbol{U}^T. $$

Since the matrices here have dimension \( n\times n \), we have

$$ \boldsymbol{\Sigma}\boldsymbol{\Sigma}^T = \begin{bmatrix} \tilde{\boldsymbol{\Sigma}} \\ \boldsymbol{0}\\ \end{bmatrix}\begin{bmatrix} \tilde{\boldsymbol{\Sigma}} \boldsymbol{0}\\ \end{bmatrix}=\begin{bmatrix} \tilde{\boldsymbol{\Sigma}} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0}\\ \end{bmatrix}, $$

leading to

$$ \boldsymbol{X}\boldsymbol{X}^T=\boldsymbol{U}\begin{bmatrix} \tilde{\boldsymbol{\Sigma}} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0}\\ \end{bmatrix}\boldsymbol{U}^T. $$

Multiplying with \( \boldsymbol{U} \) from the right gives us the eigenvalue problem

$$ (\boldsymbol{X}\boldsymbol{X}^T)\boldsymbol{U}=\boldsymbol{U}\begin{bmatrix} \tilde{\boldsymbol{\Sigma}} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0}\\ \end{bmatrix}. $$

It means that the eigenvalues of \( \boldsymbol{X}\boldsymbol{X}^T \) are again given by the non-zero singular values plus now a series of zeros. The column vectors of \( \boldsymbol{U} \) are the eigenvectors of \( \boldsymbol{X}\boldsymbol{X}^T \) and measure how much correlations are contained in the rows of \( \boldsymbol{X} \).

Since we will mainly be interested in the correlations among the features of our data (the columns of \( \boldsymbol{X} \), the quantity of interest for us are the non-zero singular values and the column vectors of \( \boldsymbol{V} \).