Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Lasso Regression

For Lasso regression our cost function is

C(\boldsymbol{\beta})=\sum_{i=0}^{p-1}(y_i-\beta_i)^2+\lambda\sum_{i=0}^{p-1}\vert\beta_i\vert=\sum_{i=0}^{p-1}(y_i-\beta_i)^2+\lambda\sum_{i=0}^{p-1}\sqrt{\beta_i^2},

and minimizing we have that

-2\sum_{i=0}^{p-1}(y_i-\beta_i)+\lambda \sum_{i=0}^{p-1}\frac{(\beta_i)}{\vert\beta_i\vert}=0,

which leads to

\hat{\boldsymbol{\beta}}_i^{\mathrm{Lasso}} = \left\{\begin{array}{ccc}y_i-\frac{\lambda}{2} &\mathrm{if} & y_i> \frac{\lambda}{2}\\ y_i+\frac{\lambda}{2} &\mathrm{if} & y_i < -\frac{\lambda}{2}\\ 0 &\mathrm{if} & \vert y_i\vert\le \frac{\lambda}{2}\end{array}\right.\\.

Plotting these results shows clearly that Lasso regression suppresses (sets to zero) values of \beta_i for specific values of \lambda . Ridge regression reduces on the other hand the values of \beta_i as function of \lambda .