Comparison with OLS

When we compare this with the ordinary least squares result we have

$$ \hat{\boldsymbol{\beta}}_{\mathrm{OLS}} = \left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1}\boldsymbol{X}^T\boldsymbol{y}, $$

which can lead to singular matrices. However, with the SVD, we can always compute the inverse of the matrix \( \boldsymbol{X}^T\boldsymbol{X} \).

We see that Ridge regression is nothing but the standard OLS with a modified diagonal term added to \( \boldsymbol{X}^T\boldsymbol{X} \). The consequences, in particular for our discussion of the bias-variance tradeoff are rather interesting. We will see that for specific values of \( \lambda \), we may even reduce the variance of the optimal parameters \( \boldsymbol{\beta} \). These topics and other related ones, will be discussed after the more linear algebra oriented analysis here.