Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Lasso case

For Lasso we need now, keeping a constraint on \vert\beta_0\vert+\vert\beta_1\vert=1 , to take the derivative of the absolute values of \beta_0 and \beta_1 . This gives us the following derivatives of the cost function

C(\boldsymbol{\beta})=(4-2\beta_0)^2+(2-\beta_1)^2+\lambda(\vert\beta_0\vert+\vert\beta_1\vert), \frac{\partial C(\boldsymbol{\beta})}{\partial \beta_0}=-4(4-2\beta_0)+\lambda\mathrm{sgn}(\beta_0)=0,

and

\frac{\partial C(\boldsymbol{\beta})}{\partial \beta_1}=-2(2-\beta_1)+\lambda\mathrm{sgn}(\beta_1)=0.

We have now four cases to solve besides the trivial cases \beta_0 and/or \beta_1 are zero, namely

  1. \beta_0 > 0 and \beta_1 > 0 ,
  2. \beta_0 > 0 and \beta_1 < 0 ,
  3. \beta_0 < 0 and \beta_1 > 0 ,
  4. \beta_0 < 0 and \beta_1 < 0 .