Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Eigenvalue problems, basic definitions

Let us consider the matrix \mathbf{A} of dimension n . The eigenvalues of \mathbf{A} are defined through the matrix equation \mathbf{A}\mathbf{x}^{(\nu)} = \lambda^{(\nu)}\mathbf{x}^{(\nu)}, where \lambda^{(\nu)} are the eigenvalues and \mathbf{x}^{(\nu)} the corresponding eigenvectors. Unless otherwise stated, when we use the wording eigenvector we mean the right eigenvector. The left eigenvalue problem is defined as \mathbf{x}^{(\nu)}_L\mathbf{A} = \lambda^{(\nu)}\mathbf{x}^{(\nu)}_L The above right eigenvector problem is equivalent to a set of n equations with n unknowns x_i .