We have thus \hat{A}\hat{q}_k=\beta_{k-1}\hat{q}_{k-1}+\alpha_k\hat{q}_k+\beta_k\hat{q}_{k+1}, with \beta_0\hat{q}_0=0 for k=1:n-1 and \alpha_k=\hat{q}_k^T\hat{A}\hat{q}_k. If \hat{r}_k=(\hat{A}-\alpha_k\hat{I})\hat{q}_k-\beta_{k-1}\hat{q}_{k-1}, is non-zero, then \hat{q}_{k+1}=\hat{r}_{k}/\beta_k, with \beta_k=\pm ||\hat{r}_{k}||_2 .