Loading [MathJax]/extensions/TeX/boldsymbol.js
Discussion of Jacobi's method for eigenvalues
- Choose a tolerance \epsilon , making it a small number, typically 10^{-8} or smaller.
- Setup a while test where one compares the norm of the newly computed off-diagonal matrix elements \mathrm{off}(\mathbf{A}) = \sqrt{\sum_{i=1}^n\sum_{j=1,j\ne i}^n a_{ij}^2} > \epsilon.
- Now choose the matrix elements a_{kl} so that we have those with largest value, that is |a_{kl}|=\mathrm{max}_{i\ne j} |a_{ij}| .
- Compute thereafter \tau = (a_{ll}-a_{kk})/2a_{kl} , \tan\theta , \cos\theta and \sin\theta .
- Compute thereafter the similarity transformation for this set of values (k,l) , obtaining the new matrix \mathbf{B}= \mathbf{S}(k,l,\theta)^T \mathbf{A}\mathbf{S}(k,l,\theta) .
- Compute the new norm of the off-diagonal matrix elements and continue till you have satisfied \mathrm{off}(\mathbf{B}) \le \epsilon