We are first interested in the solution of the radial part of Schroedinger's equation for one electron. This equation reads $$ -\frac{\hbar^2}{2 m} \left ( \frac{1}{r^2} \frac{d}{dr} r^2 \frac{d}{dr} - \frac{l (l + 1)}{r^2} \right )R(r) + V(r) R(r) = E R(r). $$ In our case \( V(r) \) is the harmonic oscillator potential \( (1/2)kr^2 \) with \( k=m\omega^2 \) and \( E \) is the energy of the harmonic oscillator in three dimensions. The oscillator frequency is \( \omega \) and the energies are $$ E_{nl}= \hbar \omega \left(2n+l+\frac{3}{2}\right), $$ with \( n=0,1,2,\dots \) and \( l=0,1,2,\dots \).