Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Discussion of project 2

With a given number of steps, n_{\mathrm{step}} , we then define the step h as h=\frac{\rho_{\mathrm{max}}-\rho_{\mathrm{min}} }{n_{\mathrm{step}}}. Define an arbitrary value of \rho as \rho_i= \rho_{\mathrm{min}} + ih \hspace{1cm} i=0,1,2,\dots , n_{\mathrm{step}} we can rewrite the Schr\"odinger equation for \rho_i as -\frac{u(\rho_i+h) -2u(\rho_i) +u(\rho_i-h)}{h^2}+\rho_i^2u(\rho_i) = \lambda u(\rho_i), or in a more compact way -\frac{u_{i+1} -2u_i +u_{i-1}}{h^2}+\rho_i^2u_i=-\frac{u_{i+1} -2u_i +u_{i-1} }{h^2}+V_iu_i = \lambda u_i, where V_i=\rho_i^2 is the harmonic oscillator potential.