Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Eigenvalue problems, basic definitions

To prove this we start with the eigenvalue problem and a similarity transformed matrix \mathbf{B} . \mathbf{A}\mathbf{x}=\lambda\mathbf{x} \hspace{1cm} \mathrm{and}\hspace{1cm} \mathbf{B}= \mathbf{S}^T \mathbf{A}\mathbf{S}. We multiply the first equation on the left by \mathbf{S}^T and insert \mathbf{S}^{T}\mathbf{S} = \mathbf{I} between \mathbf{A} and \mathbf{x} . Then we get \begin{equation} (\mathbf{S}^T\mathbf{A}\mathbf{S})(\mathbf{S}^T\mathbf{x})=\lambda\mathbf{S}^T\mathbf{x} , \tag{1} \end{equation} which is the same as \mathbf{B} \left ( \mathbf{S}^T\mathbf{x} \right ) = \lambda \left (\mathbf{S}^T\mathbf{x}\right ). The variable \lambda is an eigenvalue of \mathbf{B} as well, but with eigenvector \mathbf{S}^T\mathbf{x} .