The eigenvalues of a matrix \mathbf{A}\in {\mathbb{C}}^{n\times n} are thus the n roots of its characteristic polynomial P(\lambda) = det(\lambda\mathbf{I}-\mathbf{A}), or P(\lambda)= \prod_{i=1}^{n}\left(\lambda_i-\lambda\right). The set of these roots is called the spectrum and is denoted as \lambda(\mathbf{A}) . If \lambda(\mathbf{A})=\left\{\lambda_1,\lambda_2,\dots ,\lambda_n\right\} then we have det(\mathbf{A})= \lambda_1\lambda_2\dots\lambda_n, and if we define the trace of \mathbf{A} as Tr(\mathbf{A})=\sum_{i=1}^n a_{ii} then Tr(\mathbf{A})=\lambda_1+\lambda_2+\dots+\lambda_n.