Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Discussion of project 2

We have thus -\frac{d^2}{d\rho^2} u(\rho) + \frac{mk}{\hbar^2} \alpha^4\rho^2u(\rho) = \frac{2m\alpha^2}{\hbar^2}E u(\rho) . The constant \alpha can now be fixed so that \frac{mk}{\hbar^2} \alpha^4 = 1, or \alpha = \left(\frac{\hbar^2}{mk}\right)^{1/4}. Defining \lambda = \frac{2m\alpha^2}{\hbar^2}E, we can rewrite Schroedinger's equation as -\frac{d^2}{d\rho^2} u(\rho) + \rho^2u(\rho) = \lambda u(\rho) . This is the first equation to solve numerically. In three dimensions the eigenvalues for l=0 are \lambda_0=3,\lambda_1=7,\lambda_2=11,\dots .