# Common imports
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn.linear_model as skl
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer
# Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"
if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)
if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)
if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)
def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)
def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)
def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')
def FrankeFunction(x,y):
term1 = 0.75*np.exp(-(0.25*(9*x-2)**2) - 0.25*((9*y-2)**2))
term2 = 0.75*np.exp(-((9*x+1)**2)/49.0 - 0.1*(9*y+1))
term3 = 0.5*np.exp(-(9*x-7)**2/4.0 - 0.25*((9*y-3)**2))
term4 = -0.2*np.exp(-(9*x-4)**2 - (9*y-7)**2)
return term1 + term2 + term3 + term4
def create_X(x, y, n ):
if len(x.shape) > 1:
x = np.ravel(x)
y = np.ravel(y)
N = len(x)
l = int((n+1)*(n+2)/2) # Number of elements in beta
X = np.ones((N,l))
for i in range(1,n+1):
q = int((i)*(i+1)/2)
for k in range(i+1):
X[:,q+k] = (x**(i-k))*(y**k)
return X
# Making meshgrid of datapoints and compute Franke's function
n = 5
N = 1000
x = np.sort(np.random.uniform(0, 1, N))
y = np.sort(np.random.uniform(0, 1, N))
z = FrankeFunction(x, y)
X = create_X(x, y, n=n)
# split in training and test data
X_train, X_test, y_train, y_test = train_test_split(X,z,test_size=0.2)
clf = skl.LinearRegression().fit(X_train, y_train)
# The mean squared error and R2 score
print("MSE before scaling: {:.2f}".format(mean_squared_error(clf.predict(X_test), y_test)))
print("R2 score before scaling {:.2f}".format(clf.score(X_test,y_test)))
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
print("Feature min values before scaling:\n {}".format(X_train.min(axis=0)))
print("Feature max values before scaling:\n {}".format(X_train.max(axis=0)))
print("Feature min values after scaling:\n {}".format(X_train_scaled.min(axis=0)))
print("Feature max values after scaling:\n {}".format(X_train_scaled.max(axis=0)))
clf = skl.LinearRegression().fit(X_train_scaled, y_train)
print("MSE after scaling: {:.2f}".format(mean_squared_error(clf.predict(X_test_scaled), y_test)))
print("R2 score for scaled data: {:.2f}".format(clf.score(X_test_scaled,y_test)))