The covariance takes values between zero and infinity and may thus lead to problems with loss of numerical precision for particularly large values. It is common to scale the covariance matrix by introducing instead the correlation matrix defined via the so-called correlation function
$$ \mathrm{corr}[\boldsymbol{x},\boldsymbol{y}]=\frac{\mathrm{cov}[\boldsymbol{x},\boldsymbol{y}]}{\sqrt{\mathrm{var}[\boldsymbol{x}] \mathrm{var}[\boldsymbol{y}]}}. $$The correlation function is then given by values \( \mathrm{corr}[\boldsymbol{x},\boldsymbol{y}] \in [-1,1] \). This avoids eventual problems with too large values. We can then define the correlation matrix for the two vectors \( \boldsymbol{x} \) and \( \boldsymbol{y} \) as
$$ \boldsymbol{K}[\boldsymbol{x},\boldsymbol{y}] = \begin{bmatrix} 1 & \mathrm{corr}[\boldsymbol{x},\boldsymbol{y}] \\ \mathrm{corr}[\boldsymbol{y},\boldsymbol{x}] & 1 \\ \end{bmatrix}, $$In the above example this is the function we constructed using pandas.