We can rewrite the covariance matrix in a more compact form in terms of the design/feature matrix \( \boldsymbol{X} \) as
$$ \boldsymbol{C}[\boldsymbol{x}] = \frac{1}{n}\boldsymbol{X}^T\boldsymbol{X}= \mathbb{E}[\boldsymbol{X}^T\boldsymbol{X}]. $$To see this let us simply look at a design matrix \( \boldsymbol{X}\in {\mathbb{R}}^{2\times 2} \)
$$ \boldsymbol{X}=\begin{bmatrix} x_{00} & x_{01}\\ x_{10} & x_{11}\\ \end{bmatrix}=\begin{bmatrix} \boldsymbol{x}_{0} & \boldsymbol{x}_{1}\\ \end{bmatrix}. $$If we then compute the expectation value (note the \( 1/n \) factor instead of \( 1/(n-1) \))
$$ \mathbb{E}[\boldsymbol{X}^T\boldsymbol{X}] = \frac{1}{n}\boldsymbol{X}^T\boldsymbol{X}=\frac{1}{n}\begin{bmatrix} x_{00}^2+x_{10}^2 & x_{00}x_{01}+x_{10}x_{11}\\ x_{01}x_{00}+x_{11}x_{10} & x_{01}^2+x_{11}^2\\ \end{bmatrix}, $$which is just
$$ \boldsymbol{C}[\boldsymbol{x}_0,\boldsymbol{x}_1] = \boldsymbol{C}[\boldsymbol{x}]=\begin{bmatrix} \mathrm{var}[\boldsymbol{x}_0] & \mathrm{cov}[\boldsymbol{x}_0,\boldsymbol{x}_1] \\ \mathrm{cov}[\boldsymbol{x}_1,\boldsymbol{x}_0] & \mathrm{var}[\boldsymbol{x}_1] \\ \end{bmatrix}, $$where we wrote $$\boldsymbol{C}[\boldsymbol{x}_0,\boldsymbol{x}_1] = \boldsymbol{C}[\boldsymbol{x}]$$ to indicate that this is the covariance of the vectors \( \boldsymbol{x} \) of the design/feature matrix \( \boldsymbol{X} \).
It is easy to generalize this to a matrix \( \boldsymbol{X}\in {\mathbb{R}}^{n\times p} \).