Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Correlation Function and Design/Feature Matrix

In our derivation of the various regression algorithms like Ordinary Least Squares or Ridge regression we defined the design/feature matrix \boldsymbol{X} as

\boldsymbol{X}=\begin{bmatrix} x_{0,0} & x_{0,1} & x_{0,2}& \dots & \dots x_{0,p-1}\\ x_{1,0} & x_{1,1} & x_{1,2}& \dots & \dots x_{1,p-1}\\ x_{2,0} & x_{2,1} & x_{2,2}& \dots & \dots x_{2,p-1}\\ \dots & \dots & \dots & \dots \dots & \dots \\ x_{n-2,0} & x_{n-2,1} & x_{n-2,2}& \dots & \dots x_{n-2,p-1}\\ x_{n-1,0} & x_{n-1,1} & x_{n-1,2}& \dots & \dots x_{n-1,p-1}\\ \end{bmatrix},

with \boldsymbol{X}\in {\mathbb{R}}^{n\times p} , with the predictors/features p refering to the column numbers and the entries n being the row elements. We can rewrite the design/feature matrix in terms of its column vectors as

\boldsymbol{X}=\begin{bmatrix} \boldsymbol{x}_0 & \boldsymbol{x}_1 & \boldsymbol{x}_2 & \dots & \dots & \boldsymbol{x}_{p-1}\end{bmatrix},

with a given vector

\boldsymbol{x}_i^T = \begin{bmatrix}x_{0,i} & x_{1,i} & x_{2,i}& \dots & \dots x_{n-1,i}\end{bmatrix}.

With these definitions, we can now rewrite our 2\times 2 correlation/covariance matrix in terms of a moe general design/feature matrix \boldsymbol{X}\in {\mathbb{R}}^{n\times p} . This leads to a p\times p covariance matrix for the vectors \boldsymbol{x}_i with i=0,1,\dots,p-1

\boldsymbol{C}[\boldsymbol{x}] = \begin{bmatrix} \mathrm{var}[\boldsymbol{x}_0] & \mathrm{cov}[\boldsymbol{x}_0,\boldsymbol{x}_1] & \mathrm{cov}[\boldsymbol{x}_0,\boldsymbol{x}_2] & \dots & \dots & \mathrm{cov}[\boldsymbol{x}_0,\boldsymbol{x}_{p-1}]\\ \mathrm{cov}[\boldsymbol{x}_1,\boldsymbol{x}_0] & \mathrm{var}[\boldsymbol{x}_1] & \mathrm{cov}[\boldsymbol{x}_1,\boldsymbol{x}_2] & \dots & \dots & \mathrm{cov}[\boldsymbol{x}_1,\boldsymbol{x}_{p-1}]\\ \mathrm{cov}[\boldsymbol{x}_2,\boldsymbol{x}_0] & \mathrm{cov}[\boldsymbol{x}_2,\boldsymbol{x}_1] & \mathrm{var}[\boldsymbol{x}_2] & \dots & \dots & \mathrm{cov}[\boldsymbol{x}_2,\boldsymbol{x}_{p-1}]\\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \mathrm{cov}[\boldsymbol{x}_{p-1},\boldsymbol{x}_0] & \mathrm{cov}[\boldsymbol{x}_{p-1},\boldsymbol{x}_1] & \mathrm{cov}[\boldsymbol{x}_{p-1},\boldsymbol{x}_{2}] & \dots & \dots & \mathrm{var}[\boldsymbol{x}_{p-1}]\\ \end{bmatrix},

and the correlation matrix

\boldsymbol{K}[\boldsymbol{x}] = \begin{bmatrix} 1 & \mathrm{corr}[\boldsymbol{x}_0,\boldsymbol{x}_1] & \mathrm{corr}[\boldsymbol{x}_0,\boldsymbol{x}_2] & \dots & \dots & \mathrm{corr}[\boldsymbol{x}_0,\boldsymbol{x}_{p-1}]\\ \mathrm{corr}[\boldsymbol{x}_1,\boldsymbol{x}_0] & 1 & \mathrm{corr}[\boldsymbol{x}_1,\boldsymbol{x}_2] & \dots & \dots & \mathrm{corr}[\boldsymbol{x}_1,\boldsymbol{x}_{p-1}]\\ \mathrm{corr}[\boldsymbol{x}_2,\boldsymbol{x}_0] & \mathrm{corr}[\boldsymbol{x}_2,\boldsymbol{x}_1] & 1 & \dots & \dots & \mathrm{corr}[\boldsymbol{x}_2,\boldsymbol{x}_{p-1}]\\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \mathrm{corr}[\boldsymbol{x}_{p-1},\boldsymbol{x}_0] & \mathrm{corr}[\boldsymbol{x}_{p-1},\boldsymbol{x}_1] & \mathrm{corr}[\boldsymbol{x}_{p-1},\boldsymbol{x}_{2}] & \dots & \dots & 1\\ \end{bmatrix},