Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Setting up the Matrix to be inverted

The matrix that may cause problems for us is \boldsymbol{X}^T\boldsymbol{X} . Using the SVD we can rewrite this matrix as

\boldsymbol{X}^T\boldsymbol{X}=\boldsymbol{V}\boldsymbol{\Sigma}^T\boldsymbol{U}^T\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T,

and using the orthogonality of the matrix \boldsymbol{U} we have

\boldsymbol{X}^T\boldsymbol{X}=\boldsymbol{V}\boldsymbol{\Sigma}^T\boldsymbol{\Sigma}\boldsymbol{V}^T.

We define \boldsymbol{\Sigma}^T\boldsymbol{\Sigma}=\tilde{\boldsymbol{\Sigma}}^2 which is a diagonal matrix containing only the singular values squared. It has dimensionality p \times p .

We can now insert the result for the matrix \boldsymbol{X}^T\boldsymbol{X} into our equation for ordinary least squares where

\tilde{y}_{\mathrm{OLS}}=\boldsymbol{X}\left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1}\boldsymbol{X}^T\boldsymbol{y},

and using our SVD decomposition of \boldsymbol{X} we have

\tilde{y}_{\mathrm{OLS}}=\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T\left(\boldsymbol{V}\tilde{\boldsymbol{\Sigma}}^{2}(\boldsymbol{V}^T\right)^{-1}\boldsymbol{V}\boldsymbol{\Sigma}^T\boldsymbol{U}^T\boldsymbol{y},

which gives us, using the orthogonality of the matrix \boldsymbol{V} ,

\tilde{y}_{\mathrm{OLS}}=\boldsymbol{U}\boldsymbol{U}^T\boldsymbol{y}=\sum_{i=0}^{p-1}\boldsymbol{u}_i\boldsymbol{u}^T_i\boldsymbol{y},

It means that the ordinary least square model (with the optimal parameters) \boldsymbol{\tilde{y}} , corresponds to an orthogonal transformation of the output (or target) vector \boldsymbol{y} by the vectors of the matrix \boldsymbol{U} . Note that the summation ends at p-1 , that is \boldsymbol{\tilde{y}}\ne \boldsymbol{y} . We can thus not use the orthogonality relation for the matrix \boldsymbol{U} . This can already be when we multiply the matrices \boldsymbol{\Sigma}^T\boldsymbol{U}^T .