Example Matrix

As an example, consider the following \( 3\times 2 \) example for the matrix \( \boldsymbol{\Sigma} \)

$$ \boldsymbol{\Sigma}= \begin{bmatrix} 2& 0 \\ 0 & 1 \\ 0 & 0 \\ \end{bmatrix} $$

The singular values are \( \sigma_0=2 \) and \( \sigma_1=1 \). It is common to rewrite the matrix \( \boldsymbol{\Sigma} \) as

$$ \boldsymbol{\Sigma}= \begin{bmatrix} \boldsymbol{\tilde{\Sigma}}\\ \boldsymbol{0}\\ \end{bmatrix}, $$

where

$$ \boldsymbol{\tilde{\Sigma}}= \begin{bmatrix} 2& 0 \\ 0 & 1 \\ \end{bmatrix}, $$

contains only the singular values. Note also (and we will use this below) that

$$ \boldsymbol{\Sigma}^T\boldsymbol{\Sigma}= \begin{bmatrix} 4& 0 \\ 0 & 1 \\ \end{bmatrix}, $$

which is a \( 2\times 2 \) matrix while

$$ \boldsymbol{\Sigma}\boldsymbol{\Sigma}^T= \begin{bmatrix} 4& 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0\\ \end{bmatrix}, $$

is a \( 3\times 3 \) matrix. The last row and column of this last matrix contain only zeros. This will have important consequences for our SVD decomposition of the design matrix.