Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Simple case

If the matrix \boldsymbol{X} is an orthogonal (or unitary in case of complex values) matrix, we have

\boldsymbol{X}^T\boldsymbol{X}=\boldsymbol{X}\boldsymbol{X}^T = \boldsymbol{I}.

In this case the matrix \boldsymbol{A} becomes

\boldsymbol{A}=\boldsymbol{X}\left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1}\boldsymbol{X}^T)=\boldsymbol{I},

and we have the obvious case

\boldsymbol{\epsilon}=\boldsymbol{y}-\tilde{\boldsymbol{y}}=0.

This serves also as a useful test of our codes.