Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Basic math of the SVD

From standard linear algebra we know that a square matrix \boldsymbol{X} can be diagonalized if and only it is a so-called normal matrix, that is if \boldsymbol{X}\in {\mathbb{R}}^{n\times n} we have \boldsymbol{X}\boldsymbol{X}^T=\boldsymbol{X}^T\boldsymbol{X} or if \boldsymbol{X}\in {\mathbb{C}}^{n\times n} we have \boldsymbol{X}\boldsymbol{X}^{\dagger}=\boldsymbol{X}^{\dagger}\boldsymbol{X} . The matrix has then a set of eigenpairs

(\lambda_1,\boldsymbol{u}_1),\dots, (\lambda_n,\boldsymbol{u}_n),

and the eigenvalues are given by the diagonal matrix

\boldsymbol{\Sigma}=\mathrm{Diag}(\lambda_1, \dots,\lambda_n).

The matrix \boldsymbol{X} can be written in terms of an orthogonal/unitary transformation \boldsymbol{U}

\boldsymbol{X} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T,

with \boldsymbol{U}\boldsymbol{U}^T=\boldsymbol{I} or \boldsymbol{U}\boldsymbol{U}^{\dagger}=\boldsymbol{I} .

Not all square matrices are diagonalizable. A matrix like the one discussed above

\boldsymbol{X} = \begin{bmatrix} 1& -1 \\ 1& -1\\ \end{bmatrix}

is not diagonalizable, it is a so-called defective matrix. It is easy to see that the condition \boldsymbol{X}\boldsymbol{X}^T=\boldsymbol{X}^T\boldsymbol{X} is not fulfilled.