Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Further Manipulations

Let us special first to the case where we have only two parameters \beta_0 and \beta_1 . Our result for \beta_0 simplifies then to

n\beta_0 = \sum_{i=0}^{n-1}y_i - \sum_{i=0}^{n-1} X_{i1} \beta_1.

We obtain then

\beta_0 = \frac{1}{n}\sum_{i=0}^{n-1}y_i - \beta_1\frac{1}{n}\sum_{i=0}^{n-1} X_{i1}.

If we define

\mu_1=\frac{1}{n}\sum_{i=0}^{n-1} (X_{i1},

and if we define the mean value of the outputs as

\mu_y=\frac{1}{n}\sum_{i=0}^{n-1}y_i,

we have

\beta_0 = \mu_y - \beta_1\mu_{1}.

In the general case, that is we have more parameters than \beta_0 and \beta_1 , we have

\beta_0 = \frac{1}{n}\sum_{i=0}^{n-1}y_i - \frac{1}{n}\sum_{i=0}^{n-1}\sum_{j=1}^{p-1} X_{ij}\beta_j.

Replacing y_i with y_i - y_i - \overline{\boldsymbol{y}} and centering also our design matrix results in a cost function (in vector-matrix disguise)

C(\boldsymbol{\beta}) = (\boldsymbol{\tilde{y}} - \tilde{X}\boldsymbol{\beta})^T(\boldsymbol{\tilde{y}} - \tilde{X}\boldsymbol{\beta}).