However, and this is the strength of the SVD algorithm, any general matrix \( \boldsymbol{X} \) can be decomposed in terms of a diagonal matrix and two orthogonal/unitary matrices. The Singular Value Decompostion (SVD) theorem states that a general \( m\times n \) matrix \( \boldsymbol{X} \) can be written in terms of a diagonal matrix \( \boldsymbol{\Sigma} \) of dimensionality \( m\times n \) and two orthognal matrices \( \boldsymbol{U} \) and \( \boldsymbol{V} \), where the first has dimensionality \( m \times m \) and the last dimensionality \( n\times n \). We have then
$$ \boldsymbol{X} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T $$As an example, the above defective matrix can be decomposed as
$$ \boldsymbol{X} = \frac{1}{\sqrt{2}}\begin{bmatrix} 1& 1 \\ 1& -1\\ \end{bmatrix} \begin{bmatrix} 2& 0 \\ 0& 0\\ \end{bmatrix} \frac{1}{\sqrt{2}}\begin{bmatrix} 1& -1 \\ 1& 1\\ \end{bmatrix}=\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T, $$with eigenvalues \( \sigma_1=2 \) and \( \sigma_2=0 \). The SVD exits always!
The SVD decomposition (singular values) gives eigenvalues \( \sigma_i\geq\sigma_{i+1} \) for all \( i \) and for dimensions larger than \( i=p \), the eigenvalues (singular values) are zero.
In the general case, where our design matrix \( \boldsymbol{X} \) has dimension \( n\times p \), the matrix is thus decomposed into an \( n\times n \) orthogonal matrix \( \boldsymbol{U} \), a \( p\times p \) orthogonal matrix \( \boldsymbol{V} \) and a diagonal matrix \( \boldsymbol{\Sigma} \) with \( r=\mathrm{min}(n,p) \) singular values \( \sigma_i\geq 0 \) on the main diagonal and zeros filling the rest of the matrix. There are at most \( p \) singular values assuming that \( n > p \). In our regression examples for the nuclear masses and the equation of state this is indeed the case, while for the Ising model we have \( p > n \). These are often cases that lead to near singular or singular matrices.
The columns of \( \boldsymbol{U} \) are called the left singular vectors while the columns of \( \boldsymbol{V} \) are the right singular vectors.