Interpretations and optimizing our parameters

The function

$$ C(\boldsymbol{\beta})=\frac{1}{n}\left\{\left(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}\right)^T\left(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}\right)\right\}, $$

can be linked to the variance of the quantity \( y_i \) if we interpret the latter as the mean value. When linking (see the discussions next week) with the maximum likelihood approach below, we will indeed interpret \( y_i \) as a mean value

$$ y_{i}=\langle y_i \rangle = \beta_0x_{i,0}+\beta_1x_{i,1}+\beta_2x_{i,2}+\dots+\beta_{n-1}x_{i,n-1}+\epsilon_i, $$

where \( \langle y_i \rangle \) is the mean value. Keep in mind also that till now we have treated \( y_i \) as the exact value. Normally, the response (dependent or outcome) variable \( y_i \) is the outcome of a numerical experiment or another type of experiment and could thus be treated itself as an approximation to the true value. It is then always accompanied by an error estimate, often limited to a statistical error estimate given by the standard deviation discussed earlier. In the discussion here we will treat \( y_i \) as our exact value for the response variable.

In order to find the parameters \( \beta_i \) we will then minimize the spread of \( C(\boldsymbol{\beta}) \), that is we are going to solve the problem

$$ {\displaystyle \min_{\boldsymbol{\beta}\in {\mathbb{R}}^{p}}}\frac{1}{n}\left\{\left(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}\right)^T\left(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}\right)\right\}. $$

In practical terms it means we will require

$$ \frac{\partial C(\boldsymbol{\beta})}{\partial \beta_j} = \frac{\partial }{\partial \beta_j}\left[ \frac{1}{n}\sum_{i=0}^{n-1}\left(y_i-\beta_0x_{i,0}-\beta_1x_{i,1}-\beta_2x_{i,2}-\dots-\beta_{n-1}x_{i,n-1}\right)^2\right]=0, $$

which results in

$$ \frac{\partial C(\boldsymbol{\beta})}{\partial \beta_j} = -\frac{2}{n}\left[ \sum_{i=0}^{n-1}x_{ij}\left(y_i-\beta_0x_{i,0}-\beta_1x_{i,1}-\beta_2x_{i,2}-\dots-\beta_{n-1}x_{i,n-1}\right)\right]=0, $$

or in a matrix-vector form as (multiplying away the factor \( -2/n \), see derivation below)

$$ \frac{\partial C(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}^T} = 0 = \boldsymbol{X}^T\left( \boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}\right). $$