Then we say that the sequence \begin{equation*} Q_N(f) = \sum_{i=1}^N\omega_i^{(N)}f(x_i^{(N)}), \end{equation*} is convergent for all polynomials p , that is \begin{equation*} Q_N(p) = Q(p) \end{equation*} if there exits a constant C such that \begin{equation*} \sum_{i=1}^N|\omega_i^{(N)}| \le C, \end{equation*} for all N which are natural numbers.