If we then note that f(x) is just a constant, we have also \begin{equation*} f(x)\int_{-1}^{+1} \frac{ds}{s}=\int_{-1}^{+1}f(x) \frac{ds}{s} =0. \end{equation*}
Subtracting this equation from Eq. (20) yields \begin{equation} I_{\Delta}(x)={\cal P}\int_{-1}^{+1}ds\frac{f(\Delta s+x)}{s}=\int_{-1}^{+1}ds\frac{f(\Delta s+x)-f(x)}{s}, \tag{21} \end{equation} and the integrand is no longer singular since we have that \lim_{s \rightarrow 0} (f(s+x) -f(x))=0 and for the particular case s=0 the integrand is now finite.