Let us apply the above formal results to the case N=2 . This means that we can approximate a function f(x) with a polynomial P_3(x) of order 2N-1=3 .
The mesh points are the zeros of L_2(x)=1/2(3x^2-1) . These points are x_0=-1/\sqrt{3} and x_1=1/\sqrt{3} .
Specializing Eq. (16) \begin{equation*} Q_{N-1}(x_k)=\sum_{i=0}^{N-1}\alpha_iL_i(x_k) \hspace{1cm} k=0,1,\dots, N-1. \end{equation*} to N=2 yields \begin{equation*} Q_1(x_0)=\alpha_0-\alpha_1\frac{1}{\sqrt{3}}, \end{equation*} and \begin{equation*} Q_1(x_1)=\alpha_0+\alpha_1\frac{1}{\sqrt{3}}, \end{equation*} since L_0(x=\pm 1/\sqrt{3})=1 and L_1(x=\pm 1/\sqrt{3})=\pm 1/\sqrt{3} .