Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Integration points and weights with orthogonal polynomials

We develope then Q_{N-1}(x) in terms of Legendre polynomials, as done in Eq. (13), \begin{equation} Q_{N-1}(x)=\sum_{i=0}^{N-1}\alpha_iL_i(x). \tag{15} \end{equation} Using the orthogonality property of the Legendre polynomials we have \begin{equation*} \int_{-1}^1Q_{N-1}(x)dx=\sum_{i=0}^{N-1}\alpha_i\int_{-1}^1L_0(x)L_i(x)dx=2\alpha_0, \end{equation*} where we have just inserted L_0(x)=1 !