Processing math: 66%

 

 

 

Treatment of Singular Integrals

Let us apply this method to the integral I(x)=P+11dtett. The integrand diverges at x=t=0 . We rewrite it using Eq. (21) as \begin{equation} {\cal P}\int_{-1}^{+1}dt\frac{e^t}{t}=\int_{-1}^{+1}\frac{e^t-1}{t}, \tag{24} \end{equation} since e^x=e^0=1 . With Eq. (22) we have then \begin{equation} \int_{-1}^{+1}\frac{e^t-1}{t}\approx \sum_{i=1}^{N}\omega_i\frac{e^{t_i}-1}{t_i}. \tag{25} \end{equation}