Other orthogonal polynomials, Hermite polynomials

A typical example is again the solution of Schrodinger's equation, but this time with a harmonic oscillator potential. The first few polynomials are $$ \begin{equation*} H_0(x)=1, \end{equation*} $$ $$ \begin{equation*} H_1(x)=2x, \end{equation*} $$ $$ \begin{equation*} H_2(x)=4x^2-2, \end{equation*} $$ $$ \begin{equation*} H_3(x)=8x^3-12, \end{equation*} $$ and $$ \begin{equation*} H_4(x)=16x^4-48x^2+12. \end{equation*} $$ They fulfil the orthogonality relation $$ \begin{equation*} \int_{-\infty}^{\infty}e^{-x^2}H_n(x)^2dx=2^nn!\sqrt{\pi}, \end{equation*} $$ and the recursion relation $$ \begin{equation*} H_{n+1}(x)=2xH_{n}(x)-2nH_{n-1}(x). \end{equation*} $$