Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Integration points and weights with orthogonal polynomials

This means that the matrix L_{ik} has an inverse with the properties \begin{equation*} \hat{L}^{-1}\hat{L} = \hat{I}. \end{equation*} Multiplying both sides of Eq. (16) with \sum_{j=0}^{N-1}L_{ji}^{-1} results in \begin{equation} \sum_{i=0}^{N-1}(L^{-1})_{ki}Q_{N-1}(x_i)=\alpha_k. \tag{17} \end{equation}