The exact results is \( 2.11450175075.... \). With just two mesh points we recall from the previous subsection that \( \omega_1=\omega_2=1 \) and that the mesh points are the zeros of \( L_2(x) \), namely \( x_1=-1/\sqrt{3} \) and \( x_2=1/\sqrt{3} \). Setting \( N=2 \) and inserting these values in the last equation gives $$ \begin{equation*} I_2(x=0)=\sqrt{3}\left(e^{1/\sqrt{3}}-e^{-1/\sqrt{3}}\right)=2.1129772845. \end{equation*} $$ With six mesh points we get even the exact result to the tenth digit $$ \begin{equation*} I_6(x=0)=2.11450175075! \end{equation*} $$