Other orthogonal polynomials, Laguerre polynomials

They fulfil the orthogonality relation $$ \begin{equation*} \int_{0}^{\infty}e^{-x}{\cal L}_n(x)^2dx=1, \end{equation*} $$ and the recursion relation $$ \begin{equation*} (n+1){\cal L}_{n+1}(x)=(2n+1-x){\cal L}_{n}(x)-n{\cal L}_{n-1}(x). \end{equation*} $$