Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Orthogonal polynomials, Legendre

For L_1(x) we have the general expression \begin{equation*} L_1(x) = a+bx, \end{equation*} and using the orthogonality relation \begin{equation*} \int_{-1}^1L_0(x)L_1(x)dx=0, \end{equation*} we obtain a=0 and with the condition L_1(1)=1 , we obtain b=1 , yielding \begin{equation*} L_1(x) = x. \end{equation*}