Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Orthogonal polynomials, Legendre

The corresponding polynomials P are \begin{equation*} L_k(x)=\frac{1}{2^kk!}\frac{d^k}{dx^k}(x^2-1)^k \hspace{1cm} k=0,1,2,\dots, \end{equation*} which, up to a factor, are the Legendre polynomials L_k . The latter fulfil the orthogonality relation \begin{equation} \int_{-1}^1L_i(x)L_j(x)dx=\frac{2}{2i+1}\delta_{ij}, \tag{10} \end{equation} and the recursion relation \begin{equation} (j+1)L_{j+1}(x)+jL_{j-1}(x)-(2j+1)xL_j(x)=0. \tag{11} \end{equation}