Application to the case \( N=2 \)

The matrix \( L_{ik} \) defined in Eq. (16) is then $$ \begin{equation*} \hat{L}=\left(\begin{array} {cc} 1 & -\frac{1}{\sqrt{3}}\\ 1 & \frac{1}{\sqrt{3}}\end{array}\right), \end{equation*} $$ with an inverse given by $$ \begin{equation*} \hat{L}^{-1}=\frac{\sqrt{3}}{2}\left(\begin{array} {cc} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}\\ -1 & 1\end{array}\right). \end{equation*} $$ The weights are given by the matrix elements \( 2(L_{0k})^{-1} \). We have thence \( \omega_0=1 \) and \( \omega_1=1 \).