Integration points and weights with orthogonal polynomials

We can derive this result in an alternative way by defining the vectors $$ \begin{equation*} \hat{x}_k=\left(\begin{array} {c} x_0\\ x_1\\ .\\ .\\ x_{N-1}\end{array}\right) \hspace{0.5cm} \hat{\alpha}=\left(\begin{array} {c} \alpha_0\\ \alpha_1\\ .\\ .\\ \alpha_{N-1}\end{array}\right), \end{equation*} $$ and the matrix $$ \begin{equation*} \hat{L}=\left(\begin{array} {cccc} L_0(x_0) & L_1(x_0) &\dots &L_{N-1}(x_0)\\ L_0(x_1) & L_1(x_1) &\dots &L_{N-1}(x_1)\\ \dots & \dots &\dots &\dots\\ L_0(x_{N-1}) & L_1(x_{N-1}) &\dots &L_{N-1}(x_{N-1}) \end{array}\right). \end{equation*} $$